
Design and Implementation of Fuzzing Framework
Based on IoT Applications

Tewodros Legesse Munea1 • I. Luk Kim2
• Taeshik Shon1

� Springer Science+Business Media New York 2016

Abstract Nowadays the most serious security problems are imperfection in the imple-

mentations of network protocols. This imperfection can bring a lot of vulnerabilities such

as could allow malicious user to attack the systems remotely using the network protocols

over the internet. That is why developers value software security phases involving review

of code, risk analysis, testing with penetration, and Fuzzing. In case of Fuzz testing, the

main aim is to find vulnerabilities in the software/application by sending inputs which are

not expected to the target. Then they monitor the situation of the target. Many applications

in Internet of things (IoT) (http://en.wikipedia.org/wiki/Internet_of_Things) environments

are working with File Transfer Protocol (FTP) based applications. In this study, we present

a fuzzing framework, which is applied to test network protocol implementations. It is

extendable, man-in-the-middle, smart, and mostly deterministic. Our tool, like AutoFuzz

(Gorbunov and Rosenbloom in AutoFuzz: automated network protocol fuzzing framework,

Department of Mathematical and Computation Sciences, University of Toronto Missis-

sauga, Canada L5L 1C6, 2010), has the ability to learn a given protocol implementation by

building a finite state automaton from records of communication traces between a client

and the server. Additionally, this tool has the ability to learn syntax of individual messages

at a lower level using the techniques of bioinformatics (Beddoe in Network protocol

analysis using bioinformatics algorithms, http://www.4tphi.net/*awalters/PI/pi.pdf). At

last, this framework can fuzz a given server protocol specification by changing the com-

munication traces between the server and client. We applied it to multiple implementations

of FTP server, with result of finding new and known vulnerabilities.

& Taeshik Shon
tsshon@ajou.ac.kr

Tewodros Legesse Munea
teddylegessemunea@yahoo.com

I. Luk Kim
kim1634@purdue.edu

1 Ajou University, Yeongtong-gu, Suwon-City, Gyeonggi-do 443-749, South Korea

2 Department of Computer Science, Purdue University, West Lafayette, IA 47907, USA

123

Wireless Pers Commun
DOI 10.1007/s11277-016-3322-9

http://en.wikipedia.org/wiki/Internet_of_Things
http://www.4tphi.net/%7eawalters/PI/pi.pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-016-3322-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-016-3322-9&domain=pdf

Keywords Fuzzing � Fuzz-testing � Network protocol fuzzing � Fuzz testing framework on

FTP � Fuzzing framework based on IoT applications

1 Introduction

We have been introduced to the word fuzzing (Fuzz testing) for around 20 years but

recently it has got attention all over the world. Fuzz-testing is a process of sending semi-

valid or malformed data to an application/program on purpose in the intention of finding

vulnerabilities, or errors in the target program. Fuzz testing usually gives focus on iden-

tifying bugs that can be exploited to permit any malicious user to run their own code.

Fuzzing is a kind of dynamic vulnerability detecting technology; present advanced

fuzzing techniques can be divided into two categories. One is white box fuzzing, which

combines with static analysis, symbolic execution, concrete execution and other white box

testing techniques to produce high code coverage fuzzing. The other is knowledge-based

fuzzing, which generates test cases based on format analysis. Outstanding tools such as

SPIKE, Peach, and Sulley belong to this class [1].

Fuzzing is a testing technique in software that helps to exploit the number of vulner-

abilities in software systems. Semi-random or random inputs are prepared to targeted

programs using Fuzz testing. Because the inputs are random, they have high possibility of

being incorrect and unexpected inputs to the target programs. The target program will

crash or hang during fuzz testing if it does not reject those incorrect inputs. Software

systems with no ability to survive fuzz testing will have a high probability of having

security flaws because most critical security flaws most of the time lie in insufficient or

incorrect program inputs checking. We call Fuzz testing as very quick and costly effective

in finding vulnerabilities of the system.

A Fuzzer (Fuzz testing tool) is a tool in a purpose of finding implementation flaws from

unusual inputs sent to the target implementation in the aim of generating unexpected

behavior. We can classify the network protocol Fuzzer as ‘Smart’ Fuzzer or ‘Dumb’

Fuzzer based on the knowledge it have to the target network protocol implementation. A

‘Dumb’ Fuzzer in general sends inputs which are random to its target. It doesn’t understand

the target protocol implementation’s communication. Since ‘Dumb’ Fuzzers have been

easy in developing, they are applicable to any given protocols servers or clients imme-

diately. The problem with ‘Dumb’ fuzzing is that they are less effective, around 50 %,

from ‘Smart’ fuzzing when measured [2]. We can take ProxyFuzz [3] as an example of a

‘Dumb’ Fuzzer. ProxyFuzz is a non-deterministic but man-in-the-middle network protocol

Fuzzer. Since it is non-deterministic, it modifies the network traffic [3] randomly between a

connected server and client. Secondly, we have ‘Smart’ Fuzzers, which have a pre-pro-

grammed knowledge of the target protocol implementation they are going to fuzz. They

distinctly understand the state machine of the protocol, syntax of the messages and specific

fields with their types. Using this knowledge, they efficiently fuzz target implementation

code deeply. We have Peach as an example for ‘‘Smart’’ Fuzzers. The main disadvantage

of ‘‘Smart’’ Fuzzers is they are highly reliable on the availability of documents of protocol

specification. Additionally, ‘‘Smart’’ Fuzzers need adaptation manually to make them

suitable for every new protocol implementation they are to apply to. Therefore, to apply

them to new protocols implementations is tedious and labor intensive.

T. L. Munea et al.

123

Fuzzed inputs also called unexpected or abnormal inputs or semi-valid inputs, which are

generated from opponent end-point, are fed into the system under test (SUT) and then we

monitor the behavior of the SUT for the given input. If there is crash of SUT, we say there

is a vulnerability of the software. Network protocol Fuzzers can create invalid inputs in

two ways: generating inputs for the target by understanding the protocol specification or

mutating the inputs taken from the opponent end-point. Both ways have their advantage

and disadvantage and some Fuzzers use both of them to get most vulnerability from the

target network protocol [T].

Additionally, some network protocol fuzzing tools store previous conversation between

an opponent end-point and SUT to improve the protocol Fuzzer to become much better

effective in finding vulnerabilities. Sometimes it is good to consider what happened to

some target network protocol can work for others or taking the mutated inputs of previous

sessions and apply it for current target [T].

On the other hand, most network protocol fuzzers use ASCII characters in their input

creation method in finding vulnerabilities and this has been effective in the process. This is

because the inputs we use for the conversation between client (opponent end-point) and

server (SUT) are in ASCII format for every request from clients such that request for login.

Some researchers have started using Unicode characters especially UTF-8 to find more

vulnerabilities. UTF-8 (U from Universal Character Set ? Transformation Format—8-bit

[4]) is a way of encoding characters in Unicode with the ability to encode all the possible

characters which we call them code points. This encoding uses code units with 8-bit and it

is variable-length. As other applications, its ASCII compatibility was considered in

designing as a backward compatibility. When we consider dominancy for World Wide

Web in encoding of characters, UTF-8 has took control. When we count, we found 83.3 %

of all Web pages in March 2015 (with most popular East Asian encoding, GB 2312, at

1.3 %). The W3C recommends UTF-8 as default encoding in their main standards (XML

and HTML) [4].

In this paper, we consider real-world environments, with a Fuzz testing tool which is

smart, mostly deterministic, and man-in-the-middle for a given protocol implementation of

network. Additionally, we consider FTP [5] protocol specifications, implementations and

the communication between the server and client. This helps us to understand security

threats in IoT [6] because many applications in IoT environments are working with FTP

based applications. The rest of this paper is organized as follows. In Sect. 2, we briefly

discuss the related works. Then, we have Sect. 3 which we discuss about our proposed

system’s framework and its components. Section 4 describes the steps we follow in the

framework for Fuzzing. In the following Sect. 5, we briefly describe constructing message

group order (MGO). Section 6 presents the simulation and evaluation of the framework

with other researches. In the last section we conclude our work and put our future work.

2 Related Works

Several researches have done to understand the communication format and specification of

a given network protocol automatically. We start from ‘‘Network Protocol analysis Using

Bioinformatics Algorithms’’ [7]. Here the authors provide a method to utilize algorithms of

the bioinformatics field to automate network protocol reverse engineering. They try to

align sample messages using multiple string alignment algorithms to determine individual

fields in the protocol packets. After that, the aligned messages’ consensus sequences are

Design and Implementation of Fuzzing Framework Based on IoT…

123

being examined to have understanding of the start and end of each individual fields of the

message in the given packet. They provided an open-source tool which can be used in a

collected protocol messages to determine message.

Next, we see ‘‘A Model-based Approach to Security Flaw detection of Network Pro-

tocol Implementations’’ [8], they use a technique based on synthesizing an abstract

behavioral model of a protocol implementation to extract the specification of the protocol

automatically. First they record the conversation between an opponent end-point and SUT,

from this conversation the behavioral model is understood as a finite state automaton

(FSA). The FSA briefly expresses the transitions and key states of implementation of the

protocol and this could be a guide in detecting process of the flaw in a systematic way.

They [8] proposed a model-based algorithm, which is based on passive synthesis with

partial FSA reduction, for synthesizing an abstract behavioral model of a protocol

implementation to guide input selection. For collected network traces between opponent

end-point and SUT, the algorithm constructs and also minimizes a FSA which highly based

on a function called abstraction function. If we are given conversation and are required to

map of similar messages with a unique abstract representation, we use an abstraction

function because it is a simple function.

Additionally we have ‘‘Prospex: Protocol Specification Extraction’’ [9] which the

authors first determine message types and then construct the network protocol’s FSA

because they are focused on automating the protocol specification extraction. Even if

their final application/system can be applied for protocol specifications extraction, their

FSA construction technique is totally different from the techniques mentioned in [8]. As

far as we know, we could not find both [9] and [8] systems to do more research.

Lastly but not least we have ‘‘AutoFuzz—Automated network Protocol Fuzzing

Framework’’ [10] which our work is highly based on and it is an open source fuzzing

framework for further research and development. This [10] fuzzing framework acts as

man-in-the-middle, it is a smart, and designed to fuzz the SUT of the network protocol

implementation even though it can be equally applied to fuzz the client side effectively.

First of all they denote ‘input messages’ for all messages originated from the opponent

end-point (client) side to the SUT (server) and ‘output messages’ for messages origi-

nated from the server side to the client side. This [10] framework first records the

conversation between server and client by acting as a man-in-the-middle, and then from

this conversation it automatically extracts specifications of the network protocol

implementation.

Both [8] and [10] use the same way in constructing a FSA in capturing the sample

conversation as mentioned above which helps them to understand the network protocol

implementation at a high level. But, in AutoFuzz [10], they incorporated the necessary

abstraction functions which can be extended to highly perceive given network protocol

specification. Additionally they [10] can obtain individual messages’ fields by using

techniques mentioned in [7]. This means, their [10] technique has the ability to understand

in detail the network protocol specification at a lower level by obtaining the type and

length information of the non-constant data fields of individual messages.

As a matter of fact, AutoFuzz [10] has the technique to store and associate the

messages’ syntax information from a recorded sample conversation, which is called

generic message sequence (GMS). This GMS is a sample format for a message that

used to distinguish constant data fields from non-constant data fields and to obsolete the

non-constant data fields with length and type information. Because AutoFuzz [10] has

the GMS which is used in eliminating the requirement for fuzzing functions which are

protocol specific as needed in [8]. Then in place of individual messages GMS

T. L. Munea et al.

123

representations would be carried out using Fuzzing functions and this is based on the

derived length or type information of the constant or non-constant data fields. The good

thing about AutoFuzz is that additional novel fuzzing functions can be extended. As a

conclusion, their [10] fuzzer can be implemented to fuzz in both server and client

network protocol implementation which they successfully found new and existing

vulnerabilities after applying it to three File Transfer Protocol (FTP) servers. This is

because their fuzzer acts as a man-in-the-middle and uses already built FSA for vul-

nerability detection process.

3 Proposed System

As clearly described in Sect. 2, we need to have a fuzzer which has to be smart, can act as a

man-in-the-middle with components need to understand the network protocol implemen-

tation at both higher level and lower level, and then can fuzz the target protocol imple-

mentation. Let’s start by discussing the basic elements of this framework which are JAVA

SOCKS Server, Proxy Server, Extractor of Protocol Specification, Fuzzing Functions,

Fuzzing Engine, and the framework’s User Interface.

3.1 Java SOCKS Server

SOCKS (Socket Secure) is an Internet protocol which routes or forwards network data

packets in between a server and client through a proxy server. Java SOCKS Server

supports both SOCKS4 and SOCKS5 protocols which is entirely written in Java.

SOCKS5 differ from SOCKS4 because it gives support for authentication so that

authorized users can only access the server [11]. So, our framework implements them

and works as SOCKS Server between an opponent end-point and the SUT. It is freely

available software with both binary and source code with anyone can modify and

distribute it [12]. It is designed to be easily expandable to support different encryption/

authentication/authorization methods.

3.2 Proxy Server

The same as Java SOCKS Server, our framework participates as a proxy server in a server

and client. Because of this, it records and changes the traffic of application level to obtain

target protocol’s specifications with the help of Proxy Server and perform fuzzing oper-

ations. This proxy server highly depends on the JAVA Socks server. We modified it so that

it would let direct manipulation of the application level traffic. Figure 1 describes the

architecture of our framework’s Proxy model.

Fig. 1 Proxy server model architecture of our framework

Design and Implementation of Fuzzing Framework Based on IoT…

123

3.3 Extractor of Protocol Specifications

The sample communication session between an opponent end-point and the SUT is given

to the extractor of protocol specifications which is used in extracting the FSA of the target

network protocol implementation. The framework needs to import appropriate input/output

abstraction functions in order to understand and implement any application level protocol

implementation. Additionally, using the algorithm mentioned in the Sect. 5, the framework

has the ability to extract MGO to understand the individual messages’ syntax at lower

level.

3.4 Fuzzing Functions

The fuzzing functions set at the present time contain both deterministic and non-deter-

ministic functions. The pre-programed data are inserted into the MGO in deterministic

functions. These data can be large amount of strings, big/small integer values and also

others. Whereas when we come to non-deterministic functions they randomly skip constant

or non-constant data fields of the MGOs. But they suddenly make transitions in the FSA

and insert random data into the MGOs.

The framework highly uses format violations in order to discover potential vulnera-

bilities after understanding the target protocol implementation at both higher and lower

level using deterministic functions. It deliberately violates the format or syntax specifi-

cation of the target program. Let’s introduce some of the different kinds of Fuzz testing

methods or functions in this framework using real examples of FTP protocols [13].

Insert large string If a message communication has a length limitation in the protocol

specification, the framework generates an invalid message that has a string longer than

the limitation defined in the protocol specification length. For instance, USER command

in FTP is followed by up to 255 Alpha numeric characters; the framework produces

messages that have over 255 characters.

Break character restriction rule If a message in a communication command has

restriction of characters acceptance, we provide an invalid message which contains the

restricted characters. For example, all messages in FTP communication should be

printable ASCII characters; the framework purposely provides a message that contains

non-printable ASCII characters.

Having format string Nowadays having the vulnerability of format string are common in

the software of text-based protocols. The framework uses this chance to generate an

invalid message that contains a format string such as ‘‘%s’’ and ‘‘%d’’.

Use Non-ASCII character Most of FTP protocol implementations are based on ASCII

characters as their communication, the framework provides an invalid message which

contains characters which are not in ASCII.

3.5 Fuzzing Engine

We understood the target network using FSA and MGO; we have fuzzing functions to

modify the communication; then using the fuzzing engine we can change the communi-

cation traffic between an opponent end-point and the SUT. We can upgrade the fuzzing

engine with new fuzzing functions. We have log files which are used to register every

detail in the fuzzing process so that this helps us to find the changes and states of the

communication between fuzzing actions. Because of this, we can identify which exact

T. L. Munea et al.

123

input caused the unexpected output of the application or the target program in the com-

munication. Further explanation on how we modify the traffic communication between the

opponent end-point and the SUT is explained latter.

3.6 User Interface of Our Framework

This user interface lets testers interact without difficult with the fuzz testing tool and helps

in control its actions. The framework is basically developed by the JAVA Swing library

[14] using eclipse. To visualize a protocol FSA, we use JUNG graphing library which is

free to use [15].

4 Work Flow Steps

In this section, we present the phases used in the framework to fuzz given target protocol

implementation which is presented in Fig. 2.

The flow steps used in the framework is described here. As depicted in Fig. 2, the first

step in the process is using the framework’s made Proxy Server which is mentioned above

to gather a large amount of network protocol implementation traces. We can manually edit,

import and export the collected traces at any of time. At the second step, we build and

minimize the target Protocol’s behavior model using the reduction method mentioned in

[8] which is called the passive synthesis with partial FSA. At this step we understand the

target protocol implementation at a higher level. At the third step, we want to understand

the target protocol at a lower level by building MGO by extracting each and every mes-

sage’s syntax. To build MGO we need to create input messages’ clusters. So we modified

use of abstraction function method mentioned in [8]. This means, similar input messages

are collected in their own cluster. In the next section we present the algorithm of MGO

construction with example. In a direct approach, if you have input messages and they are

given as input for abstraction function, then we expect the abstraction function to put

similar input messages together and cluster them. After that, we need to generate MGO for

the created clusters using sequence alignment algorithms. At last, we go through the target

protocol’s FSA and relate each transition with the right MGO.

Fig. 2 Fuzz testing phases used
by our framework

Design and Implementation of Fuzzing Framework Based on IoT…

123

5 Constructing Message Group Order

Message Group Order is an instance or image of a message that is used to separate constant

data fields from non-constant data fields and to attach non-constant data fields with length

and type information. In this section, we propose an algorithm which is used to obtain

MGOs. Let’s start by defining a cluster as a collection of similar messages. The con-

struction of MGO is depicted as flowchart in Fig. 3. In phase I: by applying the novel

clustering technique, we gather similar messages to cluster. In phase II: On each cluster we

apply the multiple sequence alignment algorithm specified in [7]. Then we have phase III:

here for each clusters MGO is constructed. In phase IV: for every transition in the pro-

tocol’s FSA we associate it with the corresponding MGO.

5.1 Phase I

At start, we used a novel technique proposed by [8] to cluster similar messages. Notice

that, we call ‘input messages’ for messages originating from the opponent end-point side to

the SUT and ‘output messages’ for messages originating from the server side to the client

side.

Assume for a given input messages we have an abstraction function called ftp_input.

Let’s define a set for given input messages as M = {m1, m2, m3, …, mn}. Using the

ftp_input function, the algorithm mentioned in [10] returns similar input messages’ clus-

ters. To put as equation, for every 1 B i B n, define Ci as:

Ci ¼ fMz 2 M1;M2;M3; . . .;Mnf gjftp input Mið Þ ¼ ftp input Mzð Þg ð1Þ

This algorithm in (1) returns {Ci|1 B i B n}.

Now let’s consider the following input messages/commands in FTP conversation.

Assume set

M = {‘‘open 127.0.0.1’’, ‘‘user admin C: rwd’’, ‘‘help mdelete’’, ‘‘quit admin admin’’,

‘‘open 169.20.6.223’’, ‘‘user dummy’’, ‘‘help disconnect’’, ‘‘quit’’, ‘‘open 202.30.24.92’’,

Fig. 3 Flowchart of message
group order construction

T. L. Munea et al.

123

‘‘user admin C: r’’, ‘‘help aaaaaaaaaaaaaaaaaaa’’, ‘‘quit TeddyTeddyTeddyTeddy’’,

‘‘open 215.80.0.47’’, ‘‘user admin C: rw’’, ‘‘help remotehelp’’, ‘‘quit quit’’}

From the above given input message, say Mi in M and ftp_input(Mi) returns its first four

characters. When we apply the mentioned algorithm on given example input message the

function returns a set of four clusters namely {C1, C2, C3, C4} where

C1 = {‘‘open 127.0.0.1’’, ‘‘open 169.20.6.223’’, ‘‘open 202.30.24.92’’, ‘‘open

215.80.0.47’’}, C2 = {‘‘user admin C: rwd’’, ‘‘user dummy’’, ‘‘user admin C: r’’, ‘‘user

admin C: rw’’}, C3 = {‘‘help mdelete’’, ‘‘help disconnect’’, ‘‘help aaaaaaaaaaaaaaaa

aaa’’, ‘‘help remotehelp’’}, and C4 = {‘‘quit admin admin’’, ‘‘quit’’, ‘‘quit TeddyTed-

dyTeddyTeddy’’, ‘‘quit quit’’}.

5.2 Phase II

The multiple sequence alignment algorithm which proposed in [7] is applied on every

cluster once the input messages are clustered. Using this algorithm, list of aligned mes-

sages is returned for every cluster. Needleman–Wunsch algorithm [16] is applied to align

the input messages based on the progressive alignment technique. Let’s take one cluster,

say C1, and put it in a format we get as pictured in Fig. 4.

If we apply the algorithm on the above cluster, we get four aligned input messages

displayed in Fig. 5. So, after aligning the input messages, we have four input messages

with identical length where ‘‘-’’ shows the gap between sequence.

5.3 Phase III

Once we align the input messages, we build MGOs for those clusters. If you consider the

above Figures to implement, you will have array list of message blocks. So, MGO will be

an array list where the block of the message corresponds to either a constant or non-

constant data field.

To separate block of constant or non-constant, we need to recognize the start and the

end of constant and non-constant data fields. Naturally, the algorithm checks for characters

put at identical position throughout the aligned messages and, if all characters are found to

be identical, it points that position as constant position in the resulting MGO, otherwise

non-constant position or block. We call series constant and non-constant positions as

Fig. 4 FTP sample input message’s cluster, C1

Fig. 5 FTP sample aligned input message

Design and Implementation of Fuzzing Framework Based on IoT…

123

constant and non-constant data fields respectively. So, the algorithm returns with the

following format

MGO ¼ g 1½ �; g 2½ �; g 3½ �; . . .; g n½ �½ �; where g i½ � as the i0s symbol in theMGO ð2Þ

We replace all mentioned unique characters using ‘‘b’’ instead of simple gap sequence.

This means, non-constant data fields are represented using consecutive ‘‘b’’ in the resulting
MGO. When we apply the mentioned algorithm on the FTP aligned input messages which

are presented in Fig. 5, we get the following MGO displayed in Fig. 6.

Once we specified the fields as consecutive ‘‘b’’s in the MGO for every non-constant

data fields, we need to look in detail over each character on the given position from the

aligned messages so that we can relate the type information. This means, we need to check

to which set type do consecutive ‘‘b’’s corresponds to. When we apply the type information

for consecutive ‘‘b’’s, we get our final MGO of the aligned messages as displayed in Fig. 7.

The type information will be ‘‘£’’ for alpha-numeric non-constant data fields, ‘‘L’’ for long

data fields, and so on.

5.4 Phase IV

At last, we go through the target Protocol’s FSA, then we abstract every message at a

transition and assign it to the corresponding MGO. This means, we got large network

traces sample, from this sample we generated the protocol’s FSA and every messages

transition is assigned to specific MGO.

In the last step, after we make a change for live communication sessions between the

opponent end-point and the SUT, we apply the fuzzing functions and these fuzzing

functions are assigned by the fuzzing engine. To decide which fuzzing function should be

applied for the live communication we need three criteria; the applied fuzzing function,

input message, and the current state in the FSA. Additionally list of extendable fuzzing

functions are loaded with the fuzzing engine, after the FSA and MGO associated with it. At

start, the state of the fuzzing engine is set to the root of the target protocol’s FSA. Then it

follows up the traffic for any changes. If there is a change in the input traffic, then the

fuzzing engine makes the necessary and appropriate change on the fuzzing functions.

6 Simulation and Evaluation

In this section, we present our environment setups, simulation results which we found

existing and new vulnerabilities. We implemented the framework to get specification of the

FTP. After that we applied it to fuzz some FTP server implementations. We provide an

Fig. 6 MGO for aligned FTP input message

Fig. 7 MGO for cluster 1 which aligned in Fig. 6

T. L. Munea et al.

123

overview of FTP in terms of command length for server and client conversations. We also

discuss the characteristics of our decision using the selected FTP servers.

6.1 File Transfer Protocol

File Transfer Protocol is used for file exchange on the Transmission Control Protocol/

Internet Protocol networks. It is an application level protocol. Next, we will see how FTP

implemented most commonly. At start, a client tries to connect to the server using port

number 21, which is called the control port. Using this control port socket, the client

requests are sent in addition to the login process in the form of ASCII. A new socket port

will be opened, typically on port 20, with the server to transfer data when the client

requests. This port is said to be data connection port.

Most FTP requests from client to the server are composed of a message type with a four

letter following with the actual message. We have some exceptions with three letter

message type commands like MKD, CWD, PWD, and RWD [17]. The responses of the

server are also in ASCII format with a three digit followed by optional messages. The three

digits are status codes about the response.

6.2 Simulation Setup

Phase 1 We have FTP server software like FileZilla FTP server [18], Open FTP server

[19] which are installed and ready to implement fuzz testing. These different server

implementations are: Open and compact FTP Server 1.2, FileZilla FTP Server 0.9.49,

Wing FTP Server 3.6.1, [20] and IndiFTPD FTP Server. The same as AutoFuzz, because

our framework included a proxy server, it acts as a proxy server between the server and

client. Additionally we needed to redirect all Windows ftp.exe traffic, so that we

installed proxifier [21] to redirect the traffic from client to the framework’s proxy server.

This helps us to trace the communication between the client and the server. But, here the

connections of the client should be encapsulated in SOCKS5 sessions. Next, we installed

FTP servers, we installed the proxifier to redirect the traffic to the framework’s proxy

server, and then in the next we started and run the framework so that it will start its

proxy server.

Phase 2 Next we started performing the usual FTP requests using ftp.exe client after

connecting manually. We tried to separate each session to a different network traces. We

used different kinds of login credentials, created and deleted users, created changed and

removed directories, uploaded and downloaded different kinds of files. We did sessions

of 16 network traces for this simulation. Some of them are displayed in Fig. 8.

Phase 3 Using the abstraction functions mentioned in [8] which we import for the FTP

server implementations, we abstracted all input messages which are originating from the

client side to the server to the first four characters with exception to those messages

starting with three word command (like MKD, CWD, PWD, and RWD) in which they

are abstracted to their first three characters. But, the abstraction for the output messages

will be to their first three characters. These messages are originating from the server side

to the client.

Phase 4 In the next phase, we constructed the FSA which is corresponding to the

network traces we recorded above, and displayed in Fig. 9. Additionally we minimized

the FSA. Then we need to construct the MGOs and need to associate them with the

correct FSA transitions as pictured in Fig. 10.

Design and Implementation of Fuzzing Framework Based on IoT…

123

Fig. 8 Some sessions of network traces

Fig. 9 User interface in building FSA

T. L. Munea et al.

123

Phase 5 After all this work we started the fuzzing engine. At last, we used a small FTP

client written by AutoFuzz [10] which is written in JAVA. This helps to perform a lot of

sessions and execute many requests with the server automatically.

6.3 Simulation Results

We have four FTP server implementations and we applied the framework to fuzz them

automatically. Like AutoFuzz, we did find a few unexpected behavior instances sets of one

server which is Open and Compact FTP Server 1.2. The first unexpected behavior instances

set includes crashing of this server (Open and Compact FTP Server) by sending very long

arbitrary strings before to the commands like USER, PASS, and PORT, and then sending

String ‘‘\r\n’’ after or before authentication at any state of the server.

Unlike AutoFuzz, we could and did find unexpected behavior instances sets of Wing,

IndiFTPD, Filezilla and Open and compact FTP Server. The unexpected behavior instances

set include crashing of the above four different Servers by sending very long arbitrary

different languages other than English word (non-ASCII characters) before to the com-

mands like USER, OPEN, and PORT, and then sending String ‘‘\r\n’’ at any state of the

server as pictured in Figs. 11 and 12.

The first one was already known to the public. The second unexpected behavior instances

set, like AutoFuzz found, includes executing arbitrary commands on the server before the

authentication and this attack was also known to the public even if the attack was more

dangerous. While the third attack was denial of service attack and it is new to the public.

Fig. 10 User interface after MGO is generated for the traces

Design and Implementation of Fuzzing Framework Based on IoT…

123

6.4 Evaluation of our framework to others

We presented a Fuzz Testing framework for network protocol specifications which is

applied on four FTP server implementations which also worked on Simple Mail Transfer

Protocol and Microsoft MSN protocol. In this section, we compare our research with other

related works and also additional criteria are put in Table 1.

The first one we compare is ‘‘Network Protocol analysis Using Bioinformatics Algo-

rithms’’ [7], their whole objective is to find the length and discover the exact position of

individual fields in the given protocol packets which is used to identify constant and non-

constant data fields and to attach non-constant data fields with the type and length infor-

mation. The problem with them is, they don’t care about the behavioral sequence model of

the protocol packets and also the input messages are given as a sample.

The second we evaluate our work is ‘‘A Model-based Approach to security Flaw

detection of Network Protocol Implementations’’ [8]. They use two important concepts:

Fig. 11 Sending unexpected characters prior to user command in FileZilla Server

Fig. 12 FileZilla server crashed due to unexpected characters

T. L. Munea et al.

123

T
a
b
le

1
E
v
al
u
at
io
n
o
f
o
u
r
fr
am

ew
o
k

C
ri
te
ri
a

N
et
w
o
rk

p
ro
to
co
l

an
al
y
si
s
u
si
n
g

b
io
in
fo
rm

at
ic
s

al
g
o
ri
th
m
s
[7
]

A
m
o
d
el
-b
as
ed

ap
p
ro
ac
h
to

se
cu
ri
ty

fl
aw

d
et
ec
ti
o
n
o
f

n
et
w
o
rk

p
ro
to
co
l

im
p
le
m
en
ta
ti
o
n
s
[8
]

P
ro
sp
ex
:
p
ro
to
co
l

sp
ec
ifi
ca
ti
o
n
ex
tr
ac
ti
o
n

[9
]

A
u
to
F
u
zz
—

au
tm

at
ed

n
et
w
o
rk

p
ro
to
co
l
fu
zz
in
g

fr
am

ew
o
rk

[1
0
]

D
es
ig
n
an
d
im

p
le
m
en
ta
ti
o
n
o
f

fu
zz
in
g
fr
am

e
b
as
ed

o
n
Io
T

ap
p
li
ca
ti
o
n
s

In
te
ll
ig
en
ce

le
v
el

o
n
p
ro
to
co
l

k
n
o
w
le
d
g
e

S
m
ar
t

S
m
ar
t

S
m
ar
t

S
m
ar
t

S
m
ar
t

L
ev
el

o
f

u
n
d
er
st
an
d
in
g

th
e
ta
rg
et

p
ro
to
co
l

im
p
le
m
en
ta
ti
o
n

L
o
w
er

le
v
el

H
ig
h
er

le
v
el

B
o
th

lo
w
er

an
d
h
ig
h
er

le
v
el

B
o
th

lo
w
er

an
d
h
ig
h
er

le
v
el

B
o
th

lo
w
er

an
d
h
ig
h
le
v
el

In
p
u
t
m
es
sa
g
es

G
iv
en

as
a
sa
m
p
le

S
o
ck
s
v
5
p
ro
x
y
h
el
p
s
to

in
te
rc
ep
t
th
e
m
es
sa
g
e

G
iv
en

as
a
sa
m
p
le

C
o
ll
ec
te
d
au
to
m
at
ic
al
ly

fr
o
m

co
n
v
er
sa
ti
o
n
b
et
w
ee
n
a

cl
ie
n
t
an
d
a
se
rv
er

u
si
n
g

p
ro
x
y
se
rv
er

C
o
ll
ec
te
d
au
to
m
at
ic
al
ly

fr
o
m

co
n
v
er
sa
ti
o
n
b
et
w
ee
n
a
cl
ie
n
t
an
d

a
se
rv
er

u
si
n
g
ja
v
a
so
ck
s
se
rv
er

an
d
p
ro
x
y
se
rv
er

F
u
zz
in
g
fu
n
ct
io
n
s

–
D
et
er
m
in
is
ti
c

D
et
er
m
in
is
ti
c

D
et
er
m
in
is
ti
c
an
d
n
o
n
-

d
et
er
m
in
is
ti
c

D
et
er
m
in
is
ti
c
an
d
n
o
n
-d
et
er
m
in
is
ti
c

U
se
d
ch
ar
ac
te
rs

A
S
C
II
ch
ar
ac
te
rs

A
S
C
II
ch
ar
ac
te
rs

A
S
C
II
ch
ar
ac
te
rs

A
S
C
II
ch
ar
ac
te
rs

A
S
C
II

an
d
U
T
F
-8

ch
ar
ac
te
rs

T
ar
g
et

p
ro
to
co
l

ap
p
li
ed

H
T
T
P

M
ic
ro
so
ft
M
S
N

in
st
an
t

m
es
sa
g
in
g
(M

S
N
IM

)
p
ro
to
co
l

S
im

p
le

m
ai
l
tr
an
sf
er

p
ro
to
co
l,
se
rv
er

m
es
sa
g
e
b
lo
ck
,
se
ss
io
n

in
it
ia
ti
o
n
p
ro
to
co
l

F
il
e
tr
an
sf
er

p
ro
to
co
l,
si
m
p
le

m
ai
l
tr
an
sf
er

p
ro
to
co
l

F
il
e
tr
an
sf
er

p
ro
to
co
l,
si
m
p
le

m
ai
l

tr
an
sf
er

p
ro
to
co
l,
m
ic
ro
so
ft
M
S
N

p
ro
to
co
l

V
u
ln
er
ab
il
it
ie
s

fo
u
n
d
p
ro
to
co
l

im
p
le
m
en
ta
ti
o
n

se
rv
er
s

–
G
ai
m

(L
IN

U
X
)
an
d
G
ai
m

(W
in
d
o
w
s)

A
g
o
b
o
t
C
&
C

O
p
en

an
d
co
m
p
ac
t
F
T
P

se
rv
er

1
.2

O
p
en

an
d
co
m
p
ac
t
F
T
P
se
rv
er

1
.2
,

F
il
eZ

il
la

F
T
P
se
rv
er

0
.0
.4
9
,
w
in
g

F
T
P
se
rv
er

3
.6
.1
,
In
d
iF
T
P
D

F
T
P

se
rv
er

Design and Implementation of Fuzzing Framework Based on IoT…

123

first they obtain the abstract behavior model which is approximated of a SUT protocol

implementation, next they use it to direct selection of input for a fault coverage. A large

number of input sequences are constructed automatically which we applied for our study.

They don’t care of individual messages.

The third research our framework evaluated is ‘‘Prospex: Protocol Specification

Extraction’’ [9]. They automatically deduce specification of network protocols which are

stateful. Additionally, they extract individual messages’ format specifications after mon-

itoring the application. They don’t mention how they collected the input messages.

Lastly but not least, we compared our study to ‘‘AutoFuzz: Automated network Protocol

Fuzzing Framework’’ [10]. Like AutoFuzz, we collect data automatically using Proxy

Server. We have additional function like use Non-ASCII characters and break character

restriction rule, unlike AutoFuzz, which are helpful in upgrading the fuzzing functions.

Additionally, we used two character sets for fuzzing purpose: ASCII and UTF-8.

7 Conclusion

In this study, we presented a modified and better framework with the aim to extract

network protocol implementations’ specification automatically and to test it for imple-

mentation weakness. We started by explaining about, Fuzz testing, UTF-8, then about our

framework and its components. Using this framework, we have seen how target protocol

specifications are extracted. We need to learn the protocol specification’s behavior model

and then we need to construct corresponding FSA using the framework. Additionally, the

framework is helpful in finding syntax of individual messages by abstracting protocol

specification traces. At last this framework was applied to a lot of FTP server imple-

mentations with a success result in finding new and already existing vulnerabilities. This

result basically shows that there are still the security threats in IoT application.

For future researches, we need to improve the framework with a multiple word to be

done. The framework is not fully automated towards applying the fuzzing test on the

server. We can add more abstraction functions to improve the fuzzing framework.

Nowadays abstraction functions are being replaced with likes of use of similarity scoring

techniques of sequence alignment algorithms.

Acknowledgments This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning
(2015R1A1A1A05001238).

References

1. Han, X., Wen, Q., & Zhang, Z. (2012). A mutation-based fuzz testing approach for network protocol
vulnerability detection. Beijing University of Posts and Telecommunications, Beijing, 100876, China.

2. Takanen, A., DeMott, J., & Miller, C. (2008). Fuzzing for software security testing and quality
assurance. Norwood, MA: Artech House Inc.

3. The ProxyFuzz Project. http://theartoffuzzing.com/.
4. http://en.wikipedia.org/wiki/UTF-8.
5. http://en.wikipedia.org/wiki/File_Transfer_Protocol.
6. Internet of Things (IoT). http://en.wikipedia.org/wiki/Internet_of_Things.
7. Beddoe, M. A. (2005). Network protocol analysis using bioinformatics algorithms. http://www.4tphi.

net/*awalters/PI/pi.pdf.

T. L. Munea et al.

123

http://theartoffuzzing.com/
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/File_Transfer_Protocol
http://en.wikipedia.org/wiki/Internet_of_Things
http://www.4tphi.net/%7eawalters/PI/pi.pdf
http://www.4tphi.net/%7eawalters/PI/pi.pdf

8. Hsu, Y., Shu, G., & Lee, D. (2008). A model-based approach to security flaw detection of network
protocol implementation. In IEEE ICNP.

9. Comparetti, P. M., Wondracek, G., Kruegel, C., & Kirda, E. (2009). Prospex: Protocol specification
extraction. In Proceedings of the 2009 30th IEEE symposium on security and privacy (pp.110–125).

10. Gorbunov, S., & Rosenbloom, R. (2010). AutoFuzz: Automated network protocol fuzzing framework.
Department of Mathematical and Computation Sciences, University of Toronto Mississauga, Canada
L5L 1C6.

11. SOCKS Server http://en.wikipedia.org/wiki/SOCKS.
12. JAVA SOCKS Server. http://jsocks.sourceforge.net/.
13. Kitagawa, T., Hanaoka, M., & Kono, K. (2010). AspFuzz: A state-aware protocol fuzzer based on

application-layer protocols. Department of Information and Computer Science, Keio University, 3-14-
1, Yokohama, Japan.

14. The JAVA Swing Library. http://java.sun.com/javase/6/docs/api/javax/swing/package-summary.html.
15. The Java Universal Network/Graph Framework (JUNG). http://jung.sourceforge.net/.
16. Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in

the amino acid sequence of two proteins. Journal of Molecular Biology, 48, 444–453.
17. Postel, J., & Reynolds, J. (1985). Request for Comments: 959. Network Working Group. http://www.

faqs.org/rfcs/rfc959.html.
18. https://wiki.filezilla-project.org/Character_Set.
19. Open & Compact FTP Server. http://sourceforge.net/projects/open-ftpd/.
20. Wing FTP Server. http://www.wftpserver.com/.
21. Windows Proxifier. http://www.proxifier.com/.

Tewodros Legesse Munea received B.S. degree in Computer Science
from Addis Ababa University, Addis Ababa, Ethiopia, in 2008. He is
currently pursuing his M.S. degree in Computer Engineering from
Ajou University, and is with the Information and Communication
Security Lab. His current research interest is Network Protocol
Fuzzing.

I. Luk Kim receives M.S. degree in Information Security from Korea
University, Seoul, Korea in 2010 and B.S. in Kwangwoon University
in 2012. He is pursuing Ph.D. degree in Computer Science from
Purdue University, Indiana, USA. His research interests are System/
Network Security, Software Engineering, Program Analysis, and
Cyber Physical Security.

Design and Implementation of Fuzzing Framework Based on IoT…

123

http://en.wikipedia.org/wiki/SOCKS
http://jsocks.sourceforge.net/
http://java.sun.com/javase/6/docs/api/javax/swing/package-summary.html
http://jung.sourceforge.net/
http://www.faqs.org/rfcs/rfc959.html
http://www.faqs.org/rfcs/rfc959.html
https://wiki.filezilla-project.org/Character_Set
http://sourceforge.net/projects/open-ftpd/
http://www.wftpserver.com/
http://www.proxifier.com/

Taeshik Shon received Ph.D. in Information Security from Korea
University, Seoul, Korea and M.S. and B.S. in Computer Engineering
from Ajou University, Suwon, Korea. From Aug. 2005 to Feb. 2011,
Dr. Shon was a senior engineer in the Convergence S/W Lab, DMC
R&D Center of Samsung Electronics Co., Ltd. He is currently assistant
professor at the Division of Information and Computer Engineering,
College of Information Technology, Ajou University. His research
interests include Convergence Platform Security, Mobile Cloud
Computing Security, Mobile/Wireless Network Security, WPAN/WSN
Security, Anomaly Detection.

T. L. Munea et al.

123

	Design and Implementation of Fuzzing Framework Based on IoT Applications
	Abstract
	Introduction
	Related Works
	Proposed System
	Java SOCKS Server
	Proxy Server
	Extractor of Protocol Specifications
	Fuzzing Functions
	Fuzzing Engine
	User Interface of Our Framework

	Work Flow Steps
	Constructing Message Group Order
	Phase I
	Phase II
	Phase III
	Phase IV

	Simulation and Evaluation
	File Transfer Protocol
	Simulation Setup
	Simulation Results
	Evaluation of our framework to others

	Conclusion
	Acknowledgments
	References

